Platelets Boost Recruitment of CD133+ Bone Marrow Stem Cells to Endothelium and the Rodent Liver-The Role of P-Selectin/PSGL-1 Interactions

血小板促进 CD133+ 骨髓干细胞向内皮细胞和啮齿动物肝脏的募集 - P-选择素/PSGL-1 相互作用的作用

阅读:6
作者:Nadja Lehwald, Constanze Duhme, Iryna Pinchuk, Julian Kirchner, Kristina Wieferich, Moritz Schmelzle, Kerstin Jurk, Beatrice A Windmöller, Wolfgang Hübner, Bernhard Homey, Johannes Bode, Ralf Kubitz, Tahar Benhidjeb, Martin Krüger, Simon C Robson, Wolfram T Knoefel, Beate E Kehrel, Jan Schulte Am Es

Abstract

We previously demonstrated that clinical administration of mobilized CD133+ bone marrow stem cells (BMSC) accelerates hepatic regeneration. Here, we investigated the potential of platelets to modulate CD133+BMSC homing to hepatic endothelial cells and sequestration to warm ischemic livers. Modulatory effects of platelets on the adhesion of CD133+BMSC to human and mouse liver-sinusoidal- and micro- endothelial cells (EC) respectively were evaluated in in vitro co-culture systems. CD133+BMSC adhesion to all types of EC were increased in the presence of platelets under shear stress. This platelet effect was mostly diminished by antagonization of P-selectin and its ligand P-Selectin-Glyco-Ligand-1 (PSGL-1). Inhibition of PECAM-1 as well as SDF-1 receptor CXCR4 had no such effect. In a model of the isolated reperfused rat liver subsequent to warm ischemia, the co-infusion of platelets augmented CD133+BMSC homing to the injured liver with heightened transmigration towards the extra sinusoidal space when compared to perfusion conditions without platelets. Extravascular co-localization of CD133+BMSC with hepatocytes was confirmed by confocal microscopy. We demonstrated an enhancing effect of platelets on CD133+BMSC homing to and transmigrating along hepatic EC putatively depending on PSGL-1 and P-selectin. Our insights suggest a new mechanism of platelets to augment stem cell dependent hepatic repair.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。