Conclusions
Taken together, these data highlight how CD71 delineates AM subsets that play distinct roles in IPF and furthermore show that CD71- AMs may be an important pathogenic component of fibrotic lung disease.
Methods
We used multiparametric flow cytometry, gene expression analysis, and phagocytosis/transferrin uptake assays to delineate the role of AMs expressing or lacking CD71 in the BAL of patients with IPF and of healthy control subjects. Measurements and Main
Results
There was a distinct increase in proportions of AMs lacking CD71 in patients with IPF compared with healthy control subjects. Concentrations of BAL transferrin were enhanced in IPF-BAL, and furthermore, CD71- AMs had an impaired ability to sequester transferrin. CD71+ and CD71- AMs were phenotypically, functionally, and transcriptionally distinct, with CD71- AMs characterized by reduced expression of markers of macrophage maturity, impaired phagocytosis, and enhanced expression of profibrotic genes. Importantly, proportions of AMs lacking CD71 were independently associated with worse survival, underlining the importance of this population in IPF and as a potential therapeutic target. Conclusions: Taken together, these data highlight how CD71 delineates AM subsets that play distinct roles in IPF and furthermore show that CD71- AMs may be an important pathogenic component of fibrotic lung disease.
