TGF-β1 Inhibits Osteoclast Differentiation and Abnormal Angiogenesis in Intervertebral Disc Degeneration: Evidence from RNA Sequencing and Animal Studies

TGF-β1 抑制椎间盘退变中破骨细胞分化和异常血管生成:来自 RNA 测序和动物研究的证据

阅读:9
作者:Keping Wang, Zuolong Wu, Chaoyang Gong, Guanghai Zhao, Haihong Zhang

Conclusion

From our data, we conclude that TGF-β1 repressed osteoclast differentiation and aberrant bone-associated angiogenesis in cartilage endplates (EPs) to alleviate IDD, which may be instrumental for the therapeutic targeting of IDD.

Methods

A mouse model for IDD was established. Transcriptome sequencing of nucleus pulposus tissue from mice (n = 3) identified differentially expressed mRNAs and key genes impacting bone homeostasis. A protein-protein interaction network pinpointed core genes. GO and KEGG analysis revealed gene functions. Expression levels of TGF-β1, tartrate-resistant acid phosphatase (TRAP), and cathepsin K (CTSK) were measured. Micro-CT evaluated vertebral structures and vascular imaging. Western Blot measured expression levels of Vegf, Opn, MMP3, and MMP13. Safranin O-Fast Green and TRAP staining were performed on intervertebral discs and endplates.

Objective

Mechanisms involved in developing intervertebral disc degeneration (IDD) are poorly understood, thus making developing effective therapies difficult. This study aimed to suggest a possible molecular mechanism, based on transcriptome sequencing-identified transforming growth factor (TGF-β), underlying the effects on bone homeostasis in IDD.

Results

Transcriptomic analysis found 1790 differentially expressed mRNAs in IDD mice. Twenty-eight genes related to bone homeostasis in IDD were identified. TGF-β1 was confirmed as the core gene. GO and KEGG showed TGF-β1 regulates osteoclast markers like CTSK and TRAP through pathways including NF-κB and MAPK. Experimental validation revealed lower TGF-β1 expression in IDD mice than controls, and increased TRAP and CTSK expression. Micro-CT showed decreased bone mass and intervertebral disc space in IDD mice. Vascular imaging showed increased vascular volume in IDD cartilaginous endplates. Western blot displayed increased VEGF and OPN levels, but decreased MMP3 and MMP13 in IDD mice. Safranin O-fast green staining revealed severe IDD degeneration. However, TGF-β1 injection improved bone parameters in IDD mice. In vitro experiments confirmed TGF-β1 inhibits bone marrow macrophages differentiation into osteoclasts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。