Machine Learning Approach to Raman Spectrum Analysis of MIA PaCa-2 Pancreatic Cancer Tumor Repopulating Cells for Classification and Feature Analysis

利用机器学习方法对 MIA PaCa-2 胰腺癌肿瘤再生细胞进行拉曼光谱分析,以进行分类和特征分析

阅读:9
作者:Christopher T Mandrell, Torrey E Holland, James F Wheeler, Sakineh M A Esmaeili, Kshitij Amar, Farhan Chowdhury, Poopalasingam Sivakumar

Abstract

A machine learning approach is applied to Raman spectra of cells from the MIA PaCa-2 human pancreatic cancer cell line to distinguish between tumor repopulating cells (TRCs) and parental control cells, and to aid in the identification of molecular signatures. Fifty-one Raman spectra from the two types of cells are analyzed to determine the best combination of data type, dimension size, and classification technique to differentiate the cell types. An accuracy of 0.98 is obtained from support vector machine (SVM) and k-nearest neighbor (kNN) classifiers with various dimension reduction and feature selection tools. We also identify some possible biomolecules that cause the spectral peaks that led to the best results.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。