Effects of pinacidil on changes to the microenvironment around the incision site, of a skin/muscle incision and retraction, in a rat model of postoperative pain

吡那地尔对大鼠术后疼痛模型中皮肤/肌肉切开和回缩部位周围微环境变化的影响

阅读:4
作者:Su Cao, Yinbin Qin, Junjie Chen, Shiren Shen

Abstract

The aim of the present study was to evaluate the influence of the microenvironment around an incision site, on peripheral and central sensitization. The effects of pinacidil activation of ATP-sensitive potassium (KATP) channels prior to skin/muscle incision and retraction (SMIR) surgery were assessed. A total of 24 male Sprague Dawley rats were randomly assigned to four groups: Control, sham (incision operation), SMIR (incision plus retraction 1 h after the skin/muscle incision) and pinacidil (SMIR plus pinacidil). The rats in the pinacidil group were intraperitoneally injected with pinacidil prior to the SMIR procedure. The mechanical withdrawal threshold (MWT) was determined at each time point. The microvessel density (MVD) value was determined by immunohistochemistry, and western blotting was performed to analyze the relative protein expression levels of nerve growth factor (NGF), glucose transporter protein-1 (GLUT1) and C-jun N-terminal kinases. There was a significant reduction in the levels of MVD, GLUT1 and MWT following SMIR surgery as compared with the incision alone, and a significant increase in the NGF protein expression levels. In the SMIR group, the MVD value was significantly increased seven days after surgery, as compared with three days after surgery. Additionally, intraperitoneal administration of pinacidil prior to the SMIR surgery inhibited the SMIR‑induced reduction in MWT and MVD and attenuated the SMIR‑induced GLUT1 reduction. The results of the present study suggest that the microenvironment around an incision site may affect the development of peripheral and central sensitization. In addition, pinacidil had an inhibitory effect on the formation of the inflammatory microenvironment around the incision site through activation of KATP channels, thereby inhibiting peripheral and central sensitization.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。