Preclinical Efficacy And Safety Evaluation of AAV-OTOF in DFNB9 Mouse Model And Nonhuman Primate

AAV-OTOF在DFNB9小鼠模型及非人灵长类动物中的临床前疗效及安全性评估

阅读:4
作者:Jieyu Qi, Liyan Zhang, Fangzhi Tan, Yang Zhang, Yinyi Zhou, Ziyu Zhang, Hongyang Wang, Chaorong Yu, Lulu Jiang, Jiancheng Liu, Tian Chen, Lianqiu Wu, Shanzhong Zhang, Sijie Sun, Shan Sun, Ling Lu, Qiuju Wang, Renjie Chai

Abstract

OTOF mutations are the principal causes of auditory neuropathy. There are reports on Otof-related gene therapy in mice, but there is no preclinical research on the drug evaluations. Here, Anc80L65 and the mouse hair cell-specific Myo15 promoter (mMyo15) are used to selectively and effectively deliver human OTOF to hair cells in mice and nonhuman primates to evaluate the efficacy and safety of OTOF gene therapy drugs. A new dual-AAV-OTOF-hybrid strategy to transfer full-length OTOF is generated, which can stably restore hearing in adult OTOFp.Q939*/Q939* mice with profound deafness, with the longest duration being at least 150 days, and the best therapeutic effect without difference in hearing from wild-type mice. An AAV microinjection method into the cochlea of cynomolgus monkeys without hearing impairment is further established and found the OTOF can be safely and effectively driven by the mMyo15 promoter in hair cells. In addition, the therapeutic dose of AAV drugs has no impact on normal hearing and does not cause significant systemic toxicity both in mouse and nonhuman primates. In summary, this study develops a potential gene therapy strategy for DFNB9 patients in the clinic and provides complete, standardized, and systematic research data for clinical research and application.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。