Single-Cell Atlas of Neonatal Mouse Hearts Reveals an Unexpected Cardiomyocyte

新生小鼠心脏单细胞图谱揭示出意想不到的心肌细胞

阅读:5
作者:Junwei Shen, Linlin Ma, Jing Hu, Yanfei Li

Background

Single-cell RNA sequencing is widely used in cancer research and organ development because of its powerful ability to analyze cellular heterogeneity. However, its application in cardiomyocytes is dissatisfactory mainly because the cardiomyocytes are too large and fragile to withstand traditional single-cell approaches.

Conclusions

This mouse cardiac cell atlas improves our understanding of cardiomyocyte heterogeneity and provides a valuable reference in response to varying physiological conditions and diseases.

Results

Through designing the isolation procedure of neonatal mouse cardiac cells, we provide detailed cellular atlases of the heart at single-cell resolution across 4 different stages after birth. We have obtained 10 000 cardiomyocytes; to our knowledge, this is the most extensive reference framework to date. Moreover, we have discovered unexpected erythrocyte-like cardiomyocyte-terminal cardiomyocytes, comprising more than a third of all cardiomyocytes. Only a few genes are highly expressed in these cardiomyocytes. They are highly differentiated cardiomyocytes that function as contraction pumps. In addition, we have identified 2 cardiomyocyte-like conducting cells, lending support to the theory that the sinoatrial node pacemaker cells are specialized cardiomyocytes. Notably, we provide an initial blueprint for comprehensive interactions between cardiomyocytes and other cardiac cells. Conclusions: This mouse cardiac cell atlas improves our understanding of cardiomyocyte heterogeneity and provides a valuable reference in response to varying physiological conditions and diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。