Acquisition of Rab11 and Rab11-Fip2-A novel strategy for Chlamydia pneumoniae early survival

获得Rab11和Rab11-Fip2-肺炎衣原体早期存活的新策略

阅读:6
作者:Katja Mölleken, Johannes H Hegemann

Abstract

The initial steps in chlamydial infection involve adhesion and internalization into host cells and, most importantly, modification of the nascent inclusion to establish the intracellular niche. Here, we show that Chlamydia pneumoniae enters host cells via EGFR-dependent endocytosis into an early endosome with a phosphatidylinositol 3-phosphate (PI3P) membrane identity. Immediately after entry, the early chlamydial inclusion acquires early endosomal Rab GTPases including Rab4, Rab5, Rab7, as well as the two recycling-specific Rabs Rab11 and Rab14. While Rab5, Rab11 and Rab14 are retained in the vesicular membrane, Rab4 and Rab7 soon disappear. Loss of Rab7 enables the C. pneumoniae inclusion to escape delivery to, and degradation in lysosomes. Loss of Rab4 and retention of Rab11/ Rab14 designates the inclusion as a slowly recycling endosome-that is protected from degradation. Furthermore, we show that the Rab11/ Rab14 adaptor protein Rab11-Fip2 (Fip2) is recruited to the nascent inclusion upon internalization and retained in the membrane throughout infection. siRNA knockdown of Fip2 demonstrated that the protein is essential for internalization and infection, and expression of various deletion variants revealed that Fip2 regulates the intracellular positioning of the inclusion. Additionally, we show that binding to Rab11 and Fip2 recruits the unconventional actin motor protein myosin Vb to the early inclusion and that together they regulate the relocation of the nascent inclusion from the cell periphery to the perinuclear region, its final destination. Here, we characterize for the first time inclusion identity and inclusion-associated proteins to delineate how C. pneumoniae establishes the intracellular niche essential for its survival.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。