Transpulmonary Expression of Exosomal microRNAs in Idiopathic and Congenital Heart Disease-Related Pulmonary Arterial Hypertension

特发性和先天性心脏病相关肺动脉高压中外泌体微小RNA的跨肺表达

阅读:5
作者:Wei-Ting Chang, Wei-Chieh Lee, Yu-Wen Lin, Jhih-Yuan Shih, Chon-Seng Hong, Zhih-Cherng Chen, Chun-Yuan Chu, Chih-Hsin Hsu

Background

Pulmonary artery hypertension (PAH) is a fatal disease characterized by a complex pathogenesis. Exosomes containing microRNAs (miRs) have emerged as a novel biomarker. Transpulmonary exosomal miRs offer valuable insights into pulmonary circulation microenvironments. Hereby, we aimed to explore the potentials of transpulmonary exosomal miRs as differentiating factors between idiopathic PAH and congenital heart disease (CHD)-related PAH.

Conclusions

Our study identified a pronounced expression of transpulmonary exosomal miR-21, particularly in patients with CHD-related PAH, through next-generation sequencing analysis. Further investigation is warranted to elucidate the regulatory mechanisms involving miR-21 in the pathophysiology of PAH.

Results

During right heart catheterization, we collected exosomes at pulmonary arteries in 25 patients diagnosed with idiopathic PAH and 20 patients with CHD-related PAH. Next-generation sequencing identified several candidate exosomal miRs. Using quantitative polymerase chain reaction, we validated the expressions of these miRs and revealed significantly elevated expressions of miR-21, miR-139-5p, miR-155-5p, let-7f-5p, miR-328-3p, miR-330-3p, and miR-103a-3p in patients with CHD-related PAH, in contrast to patients with idiopathic PAH. Among these miRs, miR-21 exhibited the highest expression in patients with CHD-related PAH. These findings were further corroborated in an external cohort comprising 10 patients with idiopathic PAH and 8 patients with CHD-related PAH. Using an in vitro flow model simulating the shear stress experienced by pulmonary endothelial cells, we observed a significant upregulation of miR-21. Suppressing miR-21 rescued the shear stress-induced downregulation of the RAS/phosphatidylinositol 3-kinase/protein kinase B pathway, leading to a mitigation of apoptosis. Conclusions: Our study identified a pronounced expression of transpulmonary exosomal miR-21, particularly in patients with CHD-related PAH, through next-generation sequencing analysis. Further investigation is warranted to elucidate the regulatory mechanisms involving miR-21 in the pathophysiology of PAH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。