Ultrasonic-Cellulase Synergistic Extraction of Crude Polysaccharides from Moringa oleifera Leaves and Alleviation of Insulin Resistance in HepG2 Cells

超声波-纤维素酶协同提取辣木叶粗多糖及缓解HepG2细胞胰岛素抵抗

阅读:4
作者:Fan Gu, Liang Tao, Runling Chen, Jiao Zhang, Xingzhong Wu, Min Yang, Jun Sheng, Yang Tian

Abstract

Moringa oleifera leaves (MOL) are a new food resource, rich in functional factors. MOL polysaccharides are important active macromolecules within MOL. However, there are problems, such as low extraction rates and lack of evidence for functional activity. Therefore, in this experiment, single-factor experiments were carried out using MOL powder as the raw material, and the Plackett-Burman test was used to screen the significantly influential test factors. The extraction process of MOL polysaccharide was optimized by response surface methodology. The insulin resistance alleviating activity of MOLP polysaccharides was initially explored. The results showed that the extraction of Moringa oleifera leaves crude polysaccharides (MOLP) by ultrasonic assisted cellulase enzymatic digestion was (17.03 ± 1.03)%, and the obtained MOLP was a crude polysaccharide with an average molecular weight (Mw) of 279.48 kDa, consisting of fucose, rhamnose, arabinose, galactose, glucose, xylose, mannose, galacturonic acid, and glucuronic acid. MOLP had an IC50 value of 8.02 mg/mL for α-glucosidase and scavenging activity against free radicals such as ABTS, DPPH, hydroxyl radicals, and superoxide anion with an IC50 value of 0.21 mg/mL 0.31 mg/mL 0.97 mg/mL 0.49 mg/mL. At the same time, MOLP significantly enhanced the glucose consumption, glycogen synthesis, CAT, SOD, GSH-Px activity, and reduced the MDA and ROS content in high glucose-induced insulin-resistant HepG2 (IR-HepG2) cells. This experiment improved the extraction rate of MOLP and demonstrated that MOLP has antioxidant activity and α-glucosidase inhibitory activity, which can alleviate the insulin resistance of high glucose-induced HepG2 cells. It provides partial data support for the possible hypoglycemic effect of MOLP by alleviating oxidative stress, and also provides new ideas for the in-depth study of basic research and industrial application of MOLP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。