Nutrient Sensing by the Intestinal Epithelium Orchestrates Mucosal Antimicrobial Defense via Translational Control of Hes1

肠道上皮的营养感知通过 Hes1 的翻译控制协调粘膜抗菌防御

阅读:8
作者:Shaonan Liang, Xue-Kun Guo, Jiayao Ou, Rongyao Huang, Qing Xue, Bin Zhang, Yeonseok Chung, Wei Wu, Chen Dong, Xuerui Yang, Xiaoyu Hu

Abstract

Metabolic programs and host defense are highly integrated to ensure proper immune responses during stress. Central to these responses, mTOR regulates immune functions by sensing and integrating environmental cues, yet how these systems are coordinated at the intestinal surface remains undefined. We show that the antimicrobial peptide α-defensin is functionally sustained during nutrient deprivation because of regulation of the defensin-processing enzyme MMP7 by microbiota- and host-derived factors. Unlike other antimicrobial peptides, the MMP7-α-defensin axis remains active during nutrient fluctuations, providing essential protection against enteric pathogens. Sustained Mmp7 expression requires the microbiota and is mediated by de-repression of the transcription activator Atoh1 upon attenuation of the transcriptional repressor Hes1 in intestinal epithelial cells. Hes1 levels are regulated via mTOR and controlled translationally, constituting a metabolism-translation-transcription loop. Disrupting this loop by supplying nutrients paradoxically compromises antibacterial defense. Together, these results uncover a regulatory circuit that couples host nutrient status to epithelial antimicrobial immunity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。