Acute venous occlusion enhances matrix metalloprotease activity: Implications on endothelial dysfunction

急性静脉闭塞增强基质金属蛋白酶活性:对内皮功能障碍的影响

阅读:4
作者:Tom Alsaigh, Elizabeth S Pocock, John J Bergan, Geert W Schmid-Schönbein

Abstract

Venous hypertension is associated with microvascular inflammation, restructuring, and apoptosis, but the cellular and molecular mechanisms underlying these events remain uncertain. In the present study, we tested the hypothesis that elevated venous pressure and reduction of shear stress induce elevated enzymatic activity. This activity in turn may affect endothelial surface receptors and promote their dysfunction. Using a rodent model for venous hypertension using acute venular occlusion, microzymographic techniques for enzyme detection, and immunohistochemistry for receptor labeling, we found increased activity of the matrix metalloproteases (MMPs) -1, -8, and -9 and tissue inhibitors of metalloproteases (TIMPs) -1 and -2 in both high- and low-pressure regions. In this short time frame, we also observed that elevated venule pressure led to two different fates for the vascular endothelial growth factor receptor-2 (VEGFR2); in higher-pressure upstream regions, some animals exhibited higher VEGFR2 expression, while others displayed lower levels upstream compared to their downstream counterparts with lower pressure. VEGFR2 expression was, on average, more pronounced upon application of MMP inhibitor, suggesting possible cleavage of the receptor by activated enzymes in this model. We conclude that venous pressure elevation increases enzymatic activity which may contribute to inflammation and endothelial dysfunction associated with this disease by influencing critical surface receptors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。