Naive human B cells engage the receptor binding domain of SARS-CoV-2, variants of concern, and related sarbecoviruses

幼稚的人类 B 细胞与 SARS-CoV-2、值得关注的变体和相关的 sarbecoviruses 的受体结合域结合

阅读:4
作者:Jared Feldman, Julia Bals, Clara G Altomare, Kerri St Denis, Evan C Lam, Blake M Hauser, Larance Ronsard, Maya Sangesland, Thalia Bracamonte Moreno, Vintus Okonkwo, Nathania Hartojo, Alejandro B Balazs, Goran Bajic, Daniel Lingwood, Aaron G Schmidt

Abstract

Initial exposure to a pathogen elicits an adaptive immune response to control and eradicate the threat. Interrogating the abundance and specificity of the naive B cell repertoire drives understanding of how to mount protective responses. Here, we isolated naive B cells from eight seronegative human donors targeting the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor binding domain (RBD). Single-cell B cell receptor (BCR) sequencing identified diverse gene usage and no restriction on complementarity determining region length. A subset of recombinant antibodies produced by naive B cell precursors bound to SARS-CoV-2 RBD and engaged circulating variants including B.1.1.7, B.1.351, and B.1.617.2, as well as preemergent bat-derived coronaviruses RaTG13, SHC104, and WIV1. By structural characterization of a naive antibody in complex with SARS-CoV-2 spike, we identified a conserved mode of recognition shared with infection-induced antibodies. We found that representative naive antibodies could signal in a B cell activation assay, and by using directed evolution, we could select for a higher-affinity RBD interaction, conferred by a single amino acid change. The minimally mutated, affinity-matured antibodies also potently neutralized SARS-CoV-2. Understanding the SARS-CoV-2 RBD–specific naive repertoire may inform potential responses capable of recognizing future SARS-CoV-2 variants or emerging coronaviruses, enabling the development of pan-coronavirus vaccines aimed at engaging protective germline responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。