Oxidized ATM governs stemness of breast cancer stem cell through regulating ubiquitylation and acetylation switch

氧化 ATM 通过调节泛素化和乙酰化转换来控制乳腺癌干细胞的干性

阅读:12
作者:Xinyue Zhou, Xiaoqi Liu, Xueying Wan, Ming Xu, Rui Wang, Dan Yang, Meixi Peng, Ting Jin, Rui Tang, Manran Liu, Yixuan Hou

Abstract

Cancer stem cells (CSCs), as parts of tumor initiation cells, play a crucial role to tumorigenesis, development and recurrence. However, the complicated mechanisms of CSCs to adapt to tumor microenvironment and its stemness maintenance remains unclear. Here, we show that oxidized ATM, a hypoxia-activated cytoplasm ATM, acts a novel function to maintain CSC stemness in triple-negative breast cancer cells (BCSCs) via regulating histone H4 acetylation. Mechanistically, oxidized ATM phosphorylates TRIM21 (a E3 ubiquitin ligase) serine 80 and serine 469. Serine 80 phosphorylation of TRIM21 is essential for the ubiquitination activity of TRIM21. TRIM21 binds with SIRT1 (one of deacetylase), resulting in ubiquitylation-mediated degradation of SIRT1. The reduced SIRT1 leads to increase of histone H4 acetylation, thus facilitating CSC-related gene expression. Clinical data verify that high level of ATM in breast tumors is positively correlated with malignant grade, and is closely related with low SIRT1, high p-TRIM21, and high CD44 expression. In conclusion, our study provides a novel mechanism by which oxidized ATM governing BCSCs stemness and reveals an important link among oxidized ATM, histone acetylation, and BCSCs maintenance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。