Internalized Amyloid-β (1-42) Peptide Inhibits the Store-Operated Calcium Entry in HT-22 Cells

内化的淀粉样β肽(1-42)抑制HT-22细胞中的钙池操纵钙内流

阅读:7
作者:Joana Poejo, Yolanda Orantos-Aguilera, Francisco Javier Martin-Romero, Ana Maria Mata, Carlos Gutierrez-Merino

Abstract

Dysregulation in calcium signaling pathways plays a major role in the initiation of Alzheimer's disease (AD) pathogenesis. Accumulative experimental evidence obtained with cellular and animal models, as well as with AD brain samples, points out the high cytotoxicity of soluble small oligomeric forms of amyloid-β peptides (Aβ) in AD. In recent works, we have proposed that Aβ-calmodulin (CaM) complexation may play a major role in neuronal Ca2+ signaling, mediated by CaM-binding proteins (CaMBPs). STIM1, a recognized CaMBP, plays a key role in store-operated calcium entry (SOCE), and it has been shown that the SOCE function is diminished in AD, resulting in the instability of dendric spines and enhanced amyloidogenesis. In this work, we show that 2 and 5 h of incubation with 2 μM Aβ(1-42) oligomers of the immortalized mouse hippocampal cell line HT-22 leads to the internalization of 62 ± 11 nM and 135 ± 15 nM of Aβ(1-42), respectively. Internalized Aβ(1-42) oligomers colocalize with the endoplasmic reticulum (ER) and co-immunoprecipitated with STIM1, unveiling that this protein is a novel target of Aβ. Fluorescence resonance energy transfer measurements between STIM1 tagged with a green fluorescent protein (GFP) and Aβ(1-42)-HiLyte™-Fluor555 show that STIM1 can bind nanomolar concentrations of Aβ(1-42) oligomers at a site located close to the CaM-binding site in STIM1. Internalized Aβ(1-42) produced dysregulation of the SOCE in the HT-22 cells before a sustained alteration of cytosolic Ca2+ homeostasis can be detected, and is elicited by only 2 h of incubation with 2 μM Aβ(1-42) oligomers. We conclude that Aβ(1-42)-induced SOCE dysregulation in HT-22 cells is caused by the inhibitory modulation of STIM1, and the partial activation of ER Ca2+-leak channels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。