Conclusions
Our present study demonstrated that simvastatin attenuated diastolic dysfunction by reducing cardiac fibrosis in HFpEF hearts. Furthermore, our findings suggest that the mechanisms by which simvastatin attenuates HFpEF development involve, at least in part, inhibition of the TGF-β signaling pathway, which is activated in the HFpEF heart.
Methods
HFpEF animals were prepared by feeding C57BL/6 N mice a high-fat diet and providing water containing N[w]-nitro-<sc>l</sc>-arginine methyl ester hydrochloride (<sc>l</sc>-NAME) for 15 weeks. Simvastatin (30 mg/kg/day) or vehicle was administered orally daily during the experimental period. Cardiac function was measured by echocardiography, and cardiac fibrosis was evaluated by Masson's trichrome staining. Changes in the TGF-β signaling proteins in myocardial tissue were examined by Western blotting.
Results
A high-fat diet and <sc>l</sc>-NAME solution load induced cardiac diastolic dysfunction with cardiac fibrosis. Simvastatin treatment markedly attenuated cardiac fibrosis and reduced cardiac diastolic dysfunction. In addition, simvastatin prevented the increase in phosphorylation levels of Smad (Smad2 and Smad3) and MAPK (c-Raf, Erk1/2) pathway proteins downstream of the TGF-β receptor in cardiac tissue. Conclusions: Our present study demonstrated that simvastatin attenuated diastolic dysfunction by reducing cardiac fibrosis in HFpEF hearts. Furthermore, our findings suggest that the mechanisms by which simvastatin attenuates HFpEF development involve, at least in part, inhibition of the TGF-β signaling pathway, which is activated in the HFpEF heart.
