Activation of the prostaglandin E2 EP2 receptor attenuates renal fibrosis in unilateral ureteral obstructed mice and human kidney slices

前列腺素 E2 EP2 受体的激活可减轻单侧输尿管阻塞小鼠和人肾切片中的肾纤维化

阅读:5
作者:Michael Schou Jensen, Henricus A M Mutsaers, Stine Julie Tingskov, Michael Christensen, Mia Gebauer Madsen, Peter Olinga, Tae-Hwan Kwon, Rikke Nørregaard

Aim

Renal fibrosis plays a pivotal role in the development and progression of chronic kidney disease, which affects 10% of the adult population. Previously, it has been demonstrated that the cyclooxygenase-2 (COX-2)/prostaglandin (PG) system influences the progression of renal injury. Here, we evaluated the impact of butaprost, a selective EP2 receptor agonist, on renal fibrosis in several models of kidney injury, including human tissue slices.

Conclusion

In conclusion, this study demonstrates that stimulation of the EP2 receptor effectively mitigates renal fibrogenesis in various fibrosis models. These findings warrant further research into the clinical application of butaprost, or other EP2 agonists, for the inhibition of renal fibrosis.

Methods

We studied the anti-fibrotic efficacy of butaprost using Madin-Darby Canine Kidney (MDCK) cells, mice that underwent unilateral ureteral obstruction and human precision-cut kidney slices. Fibrogenesis was evaluated on a gene and protein level by qPCR and Western blotting.

Results

Butaprost (50 μM) reduced TGF-β-induced fibronectin (FN) expression, Smad2 phosphorylation and epithelial-mesenchymal transition in MDCK cells. In addition, treatment with 4 mg/kg/day butaprost attenuated the development of fibrosis in mice that underwent unilateral ureteral obstruction surgery, as illustrated by a reduction in the gene and protein expression of α-smooth muscle actin, FN and collagen 1A1. More importantly, a similar anti-fibrotic effect of butaprost was observed in human precision-cut kidney slices exposed to TGF-β. The mechanism of action of butaprost appeared to be a direct effect on TGF-β/Smad signalling, which was independent of the cAMP/PKA pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。