The non-glycosylated isoform of MIC26 is a constituent of the mammalian MICOS complex and promotes formation of crista junctions

MIC26 的非糖基化异构体是哺乳动物 MICOS 复合物的组成部分,促进嵴连接的形成

阅读:5
作者:Sebastian Koob, Miguel Barrera, Ruchika Anand, Andreas S Reichert

Abstract

Mitochondrial membrane architecture is important for organelle function. Alterations thereof are linked to a number of human disorders including diabetes and cardiomyopathy. The MICOS complex was recently reported to be a central player determining cristae structure and formation of crista junctions. Here we investigated the functional role of MIC26, a lipoprotein formerly termed APOO. Its levels are increased in diabetic heart tissue and in blood plasma of patients suffering from acute coronary syndrome. We demonstrate that human MIC26 exists in three distinct forms: (1) a glycosylated and secreted 55kDa protein, (2) an ER/Golgi-resident form thereof, and (3) a non-glycosylated 22kDa mitochondrial protein. The latter isoform spans the mitochondrial inner membrane and physically interacts with several MICOS complex subunits such as MIC60, MIC27, and MIC10. We further demonstrate that MIC26 and MIC27, a homologous protein formerly termed APOOL, regulate their levels in an antagonistic manner. Both proteins are positively correlated with the levels of MIC10 as well as tafazzin, an enzyme required for cardiolipin remodeling. Overexpression of MIC26 induced fragmentation of mitochondria, promoted ROS formation and resulted in impaired mitochondrial respiration. Downregulation of MIC26 induced a decrease in mitochondrial oxygen consumption, whereas mitochondrial network morphology and ROS levels remained unaffected. MIC26 depletion led to alterations in mitochondrial ultrastructure and caused a significant reduction in the number of crista junctions. In summary, we show that the human apolipoprotein MIC26 is a bona fide subunit of the MICOS complex and that MIC26 is linked to cardiolipin metabolism and promotes crista junction formation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。