Erythropoietin negatively regulates pituitary ACTH secretion

促红细胞生成素对垂体促肾上腺皮质激素 (ACTH) 分泌有负面调节作用

阅读:5
作者:Soumyadeep Dey, Tyler Scullen, Constance Tom Noguchi

Abstract

Erythropoietin (Epo) and Epo-receptor (EpoR) signaling, in addition to its classical role in erythropoiesis, exhibit a protective response in non-hematopoietic tissues. Mice with EpoR expression restricted to only hematopoietic tissues (ΔEpoRE), become obese, have low energy expenditure, and are glucose intolerant and insulin resistant. In the arcuate nucleus of the mouse hypothalamus, EpoR expression co-localizes in proopiomelanocortin (POMC) neurons. In vivo high-dose Epo treatment increases hypothalamus POMC, reduces food intake and fat mass accumulation. Here we report that Epo treatment also decreases plasma concentration of the pituitary derived POMC peptide, adrenocorticotropic hormone (ACTH). Conversely, ΔEpoRE mice show reduced hypothalamus POMC and high plasma concentrations of ACTH. In the pituitary, POMC is synthesized in the corticotroph cells, and here we examine Epo effect on pituitary POMC expression using the AtT-20 mouse corticotroph pituitary cell line. In AtT-20 cells, enzyme immunoassay analysis showed that Epo inhibits ACTH secretion. This effect is post-translational, as Epo treatment did not affect POMC mRNA expression but increased intracellular levels of ACTH peptide. Moreover, Epo reduced the basal intracellular calcium (Ca(2+)) levels, suggesting an effect in the Ca(2+)-signaling pathway. In summary, our studies suggest a novel regulatory pathway of ACTH secretion in the pituitary via EpoR-signaling. The higher plasma ACTH level in ΔEpoRE mice also suggests a possible mechanism of deregulated pituitary function with loss of Epo-signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。