Differential regulation of the water channel protein aquaporins in chondrocytes of human knee articular cartilage by aging

人类膝关节软骨软骨细胞水通道蛋白水通道蛋白随年龄变化的差异调节

阅读:5
作者:Bong Soo Kyung, Koo Whang Jung, Woo Jin Yeo, Hye Kyung Seo, Yong-Soo Lee, Dong Won Suh

Abstract

Knee cartilage is in an aqueous environment filled with synovial fluid consisting of water, various nutrients, and ions to maintain chondrocyte homeostasis. Aquaporins (AQPs) are water channel proteins that play an important role in water exchange in cells, and AQP1, -3, and -4 are known to be expressed predominantly in cartilage. We evaluated the changes in AQP expression in chondrocytes from human knee articular cartilage in patients of different ages and identified the key factor(s) that mediate age-induced alteration in AQP expression. The mRNA and protein expression of AQP1, -3 and -4 were significantly decreased in fibrocartilage compared to hyaline cartilage and in articular cartilage from older osteoarthritis patients compared to that from young patients. Gene and protein expression of AQP1, -3 and -4 were altered during the chondrogenic differentiation of C3H10T1/2 cells. The causative factors for age-associated decrease in AQP included H2O2, TNFα, and HMGB1 for AQP1, -3, and -4, respectively. In particular, the protective effect of AQP4 reduction following HMGB1 neutralization was noteworthy. The identification of other potent molecules that regulate AQP expression represents a promising therapeutic approach to suppress cartilage degeneration during aging.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。