Astragalus polysaccharide ameliorates insulin resistance in HepG2 cells through activating the STAT5/IGF-1 pathway

黄芪多糖通过激活STAT5/IGF-1通路改善HepG2细胞胰岛素抵抗

阅读:7
作者:Xinxin Yue, Wei Hao, Min Wang, Yang Fu

Background

Insulin resistance (IR) is considered as a major factor initiating type 2 diabetes mellitus and can lead to a reduction in glucose uptake that mainly occurs in the liver. Astragalus polysaccharide (APC), extracted from the traditional Chinese medicine, has been recorded to suppress IR. However, the underlying mechanism remains inadequately explored.

Conclusion

APC ameliorates IR in HepG2 cells through activating the STAT5/IGF-1 pathway.

Methods

IR was induced in HepG2 cells which further underwent APC treatment. Cell viability was determined by cell counting kit-8 assay. Pretreatment with AG490, an inhibitor of signal transducer and activator of transcription 5 (STAT5) signaling, was performed for investigating the influence of STAT5 on APC. Glucose uptake level was reflected by 2-deoxyglucose-6-phosphate content determined through colorimetric assay. Expression levels of insulin-like growth factor 1 (IGF-1), IGF-1 receptor (IGF-1R), phosphorylated-STAT5/STAT5, and p-protein kinase B (AKT)/AKT in the cells were assessed by Western blot. Radioimmunoassay (RIA) was used to detect IGF-1 secretion in the cells.

Results

APC at doses of 10 and 20 mg increased the viability of HepG2 cells with/without IR induction, and abrogated IR-induced inhibition of glucose intake. Meanwhile, APC (10 mg) offset IR-induced inhibition on the expressions of IGF-1R and IGF-1, the activation of AKT and STAT5, and the secretion of IGF-1 in HepG2 cells. More importantly, the reversal effect of APC on IR-induced alterations in HepG2 cells was counteracted by AG490.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。