Identification of transforming growth factor beta1-driven genetic programs of acute lung fibrosis

鉴定转化生长因子β1驱动的急性肺纤维化遗传程序

阅读:6
作者:Anne-Marie Pulichino, I-Ming Wang, Alexandre Caron, James Mortimer, Anick Auger, Yves Boie, Jack A Elias, Aileen Kartono, Lijing Xu, Joseph Menetski, Camil E Sayegh

Abstract

Lung fibrosis is characterized by excessive accumulation of extracellular matrix components leading to progressive airflow limitation. Distinct profibrotic pathways converge on the activation of transforming growth factor-beta (TGF-beta), a central growth factor implicated in most fibroproliferative diseases. Recently, enforced expression of bioactive human TGF-beta1 (hTGF-beta1) in lungs of transgenic mice was shown to recapitulate several key pathophysiologies observed in fibrotic disorders of the lung, including cellular inflammation, tissue fibrosis, and myofibroblast hyperplasia. Inducible expression of hTGF-beta1 in this system provided a unique opportunity to characterize TGF-beta-driven mechanisms that precede and/or follow the onset of inflammation and fibrosis. Using gene expression profiling in lungs, we demonstrate temporal activation of key genetic programs regulating cell movement and invasiveness, inflammation, organ remodeling, and fibrosis. Consistent with our gene expression data, multiple soluble mediators associated with inflammation and tissue remodeling were markedly elevated in the bronchoalveolar lavage fluid of mice expressing hTGF-beta1. We observe significant TGF-beta1-driven infiltration of F4/80+ mononuclear cells producing bioactive arginase, a marker of alternatively activated macrophages. Finally, we identified a common "fibrosis" gene signature when comparing our findings with published data derived from preclinical and clinical studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。