Comprehensive validation of T- and B-cell deficiency in rag1-null zebrafish: Implication for the robust innate defense mechanisms of teleosts

rag1 基因缺失的斑马鱼中 T 细胞和 B 细胞缺陷的全面验证:对硬骨鱼类强大的先天防御机制的启示

阅读:5
作者:Yumie Tokunaga, Masamichi Shirouzu, Ryota Sugahara, Yasutoshi Yoshiura, Ikunari Kiryu, Mitsuru Ototake, Takahiro Nagasawa, Tomonori Somamoto, Miki Nakao

Abstract

rag1 -/- zebrafish have been employed in immunological research as a useful immunodeficient vertebrate model, but with only fragmentary evidence for the lack of functional adaptive immunity. rag1-null zebrafish exhibit differences from their human and murine counterparts in that they can be maintained without any specific pathogen-free conditions. To define the immunodeficient status of rag1 -/- zebrafish, we obtained further functional evidence on T- and B-cell deficiency in the fish at the protein, cellular, and organism levels. Our developed microscale assays provided evidence that rag1 -/- fish do not possess serum IgM protein, that they do not achieve specific protection even after vaccination, and that they cannot induce antigen-specific CTL activity. The mortality rate in non-vaccinated fish suggests that rag1 -/- fish possess innate protection equivalent to that of rag1 +/- fish. Furthermore, poly(I:C)-induced immune responses revealed that the organ that controls anti-viral immunity is shifted from the spleen to the hepatopancreas due to the absence of T- and B-cell function, implying that immune homeostasis may change to an underside mode in rag-null fish. These findings suggest that the teleost relies heavily on innate immunity. Thus, this model could better highlight innate immunity in animals that lack adaptive immunity than mouse models.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。