Se-(Methyl)-selenocysteine ameliorates blood-brain barrier disruption of focal cerebral ischemia mice via ferroptosis inhibition and tight junction upregulation in an Akt/GSK3β-dependent manner

硒-(甲基)-硒代半胱氨酸通过抑制铁死亡和上调紧密连接以 Akt/GSK3β 依赖的方式改善局灶性脑缺血小鼠的血脑屏障破坏

阅读:6
作者:Yuxiang Fei, Tao Li, Ruoyu Wu, Xuejiao Xu, Sheng Hu, Ya Yang, Chenchen Jin, Wenlian Tang, Xu Zhang, Qianming Du, Chao Liu

Background

Ischemic stroke still ranks as the most fatal disease worldwide. Blood-brain barrier (BBB) is a promising therapeutic target for protection. Brain microvascular endothelial cell is a core component of BBB, the barrier function maintenance of which can ameliorate ischemic injury and improve neurological deficit. Se-methyl L-selenocysteine (SeMC) has been shown to exert cardiovascular protection. However, the protection of SeMC against ischemic stroke remains to be elucidated. This research was designed to explore the protection of SeMC from the perspective of BBB protection.

Conclusion

These results suggested that SeMC exerted protection against ischemic stroke, which might be attributed to activating the Akt/GSK3β signaling pathway and increasing the nuclear translocation of Nrf2 and β-catenin, subsequently maintaining the integrity of BBB.

Methods

To simulate cerebral ischemic injury, C57BL/6J mice were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R), and bEnd.3 was exposed to oxygen-glucose deprivation/reoxygenation (OGD/R). After the intervention of SeMC, the barrier function and the expression of tight junction and ferroptosis-associated proteins were determined. For mechanism exploration, LY294002 (Akt inhibitor) was introduced both in vivo and in vitro.

Results

SeMC lessened the brain infarct volume and attenuated the leakage of BBB in mice. In vitro, SeMC improved cell viability and maintained the barrier function of bEnd.3 cells. The protection of SeMC was accompanied with ferroptosis inhibition and tight junction protein upregulation. Mechanism studies revealed that the effect of SeMC was reversed by LY294002, indicating that the protection of SeMC against ischemic stroke was mediated by the Akt signal pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。