Thymoquinone-Induced Reactivation of Tumor Suppressor Genes in Cancer Cells Involves Epigenetic Mechanisms

百里香醌诱导癌细胞中肿瘤抑制基因的重新激活涉及表观遗传机制

阅读:8
作者:Shahad A Qadi, Mohammed A Hassan, Ryan A Sheikh, Othman As Baothman, Mazin A Zamzami, Hani Choudhry, Abdulrahman Labeed Al-Malki, Ashwag Albukhari, Mahmoud Alhosin

Abstract

The epigenetic silencing of tumor suppressor genes (TSGs) is a common finding in several solid and hematological tumors involving various epigenetic readers and writers leading to enhanced cell proliferation and defective apoptosis. Thymoquinone (TQ), the major biologically active compound of black seed oil, has demonstrated anticancer activities in various tumors by targeting several pathways. However, its effects on the epigenetic code of cancer cells are largely unknown. In the present study, we performed RNA sequencing to investigate the anticancer mechanisms of TQ-treated T-cell acute lymphoblastic leukemia cell line (Jurkat cells) and examined gene expression using different tools. We found that many key epigenetic players, including ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1), DNMT1,3A,3B, G9A, HDAC1,4,9, KDM1B, and KMT2A,B,C,D,E, were downregulated in TQ-treated Jurkat cells. Interestingly, several TSGs, such as DLC1, PPARG, ST7, FOXO6, TET2, CYP1B1, SALL4, and DDIT3, known to be epigenetically silenced in various tumors, including acute leukemia, were upregulated, along with the upregulation of several downstream pro-apoptotic genes, such as RASL11B, RASD1, GNG3, BAD, and BIK. Data obtained from RNA sequencing were confirmed using quantitative reverse transcription polymerase chain reaction (RT-qPCR) in Jurkat cells, as well as in a human breast cancer cell line (MDA-MB-468 cells). We found that the decrease in cell proliferation and in the expression of UHRF1, DNMT1, G9a, and HDAC1 genes in both cancer cell (Jurkat cells and MDA-MB-468 cells) lines depends on the TQ dose. Our results indicate that the use of TQ as an epigenetic drug represents a promising strategy for epigenetic therapy for both solid and blood tumors by targeting both DNA methylation and histone post-translational modifications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。