NLRP3 inflammasome and lipid metabolism analysis based on UPLC-Q-TOF-MS in gouty nephropathy

基于UPLC-Q-TOF-MS的痛风性肾病NLRP3炎症小体及脂质代谢分析

阅读:13
作者:Yan-Zi Zhang, Xiao-Lu Sui, Yun-Peng Xu, Feng-Juan Gu, Ai-Sha Zhang, Ji-Hong Chen

Abstract

To determine the differences in plasma metabolism between healthy patients and patients with hyperuricaemia and gouty nephropathy, the present study identified differentially expressed metabolites associated with gouty nephropathy. Furthermore, the NLRP3 inflammasome signalling pathway in gouty nephropathy was explored, and the mechanism of hyperuricaemia‑induced renal damage. Adult male patients examined between July 2016 and June 2017 were selected as the patient cohort for the present study from the Affiliated Bao'an Hospital of Shenzhen, Southern Medical University (Shenzhen, China). These patients were divided into three groups of 30 patients each: Control, hyperuricaemia and gouty nephropathy groups. The expression levels of NLRP3, ASC and caspase‑1 mRNA and protein were detected in peripheral blood mononuclear cells, and the plasma levels of IL‑1β and IL‑18. Ultra‑performance liquid chromatography coupled with quadrupole time‑of‑flight mass spectrometry was used to determine differential levels of metabolites between patients from different groups, in order to identify potential biomarkers. The expression of the NLRP3 inflammasome in peripheral blood mononuclear cells, and the levels of IL‑1β and IL‑18 in the plasma were increased in the gouty nephropathy group compared with the control and hyperuricaemia groups. In addition, 46 metabolites were identified as potential plasma metabolic biomarkers that were able to distinguish gouty nephropathy from hyperuricaemia. The majority of these metabolites were involved in lipid metabolism, in particular the activity of phospholipase Α2 and β‑oxidation. These data indicated that lipid metabolism and the NLRP3 inflammasome serve a pivotal role in gouty nephropathy. In addition, the results suggested that lipids may mediate the progression of gouty nephropathy through the activity of phospholipase A2, β‑oxidation and activation of the NLRP3 inflammasome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。