Conclusion
POR variants have different effects depending on the substrate metabolized. Disease-causing POR mutations R457H and A287P had poor activities, suggesting that diminished drug metabolism should be considered in affected patients. The common A503V polymorphism impaired CYP2D6 activities with two commonly used drugs by 40-50%, potentially explaining some genetic variation in drug metabolism.
Methods
N-27 forms of wildtype (WT), Q153R, A287P, R457H and A503V POR, and WT CYP2D6 were expressed in Escherichia coli. POR proteins in bacterial membranes were reconstituted with purified CYP2D6. Support of CYP2D6 was measured by metabolism of EOMCC (2H-1-benzopyran-3-carbonitrile,7-(ethoxy-methoxy)-2-oxo-(9Cl)), dextromethorphan and bufuralol. Michaelis constant (K(m)) and maximum velocity (V(max)) were determined in three triplicate experiments for each reaction; catalytic efficiency is expressed as V(max)/K(m).
Results
Compared with WT POR, disease-causing POR mutants A287P and R457H supported no detectable CYP2D6 activity with EOMCC, but A287P supported approximately 25% activity with dextromethorphan and bufuralol. Q153R had increased function with CYP2D6 (128% with EOMCC, 198% with dextromethorphan, 153% with bufuralol). A503V supported decreased CYP2D6 activity: 85% with EOMCC, 62% with dextromethorphan and 53% with bufuralol.
