Critical Influence of Cosolutes and Surfaces on the Assembly of Serpin-Derived Amyloid Fibrils

共溶质和表面对丝氨酸蛋白酶抑制剂衍生的淀粉样蛋白原纤维组装的关键影响

阅读:8
作者:Michael W Risør, Dennis W Juhl, Morten Bjerring, Joachim Mathiesen, Jan J Enghild, Niels C Nielsen, Daniel E Otzen

Abstract

Many proteins and peptides self-associate into highly ordered and structurally similar amyloid cross-β aggregates. This fibrillation is critically dependent on properties of the protein and the surrounding environment that alter kinetic and thermodynamic equilibria. Here, we report on dominating surface and solution effects on the fibrillogenic behavior and amyloid assembly of the C-36 peptide, a circulating bioactive peptide from the α1-antitrypsin serine protease inhibitor. C-36 converts from an unstructured peptide to mature amyloid twisted-ribbon fibrils over a few hours when incubated on polystyrene plates under physiological conditions through a pathway dominated by surface-enhanced nucleation. In contrast, in plates with nonbinding surfaces, slow bulk nucleation takes precedence over surface catalysis and leads to fibrillar polymorphism. Fibrillation is strongly ion-sensitive, underlining the interplay between hydrophilic and hydrophobic forces in molecular self-assembly. The addition of exogenous surfaces in the form of silica glass beads and polyanionic heparin molecules potently seeds the amyloid conversion process. In particular, heparin acts as an interacting template that rapidly forces β-sheet aggregation of C-36 to distinct amyloid species within minutes and leads to a more homogeneous fibril population according to solid-state NMR analysis. Heparin's template effect highlights its role in amyloid seeding and homogeneous self-assembly, which applies both in vitro and in vivo, where glycosaminoglycans are strongly associated with amyloid deposits. Our study illustrates the versatile thermodynamic landscape of amyloid formation and highlights how different experimental conditions direct C-36 into distinct macromolecular structures.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。