Loss of Endothelial CXCR7 Impairs Vascular Homeostasis and Cardiac Remodeling After Myocardial Infarction: Implications for Cardiovascular Drug Discovery

内皮 CXCR7 缺失会损害心肌梗死后的血管稳态和心脏重塑:对心血管药物研发的意义

阅读:7
作者:Huifeng Hao, Sheng Hu, Hong Chen, Dawei Bu, Liyuan Zhu, Chuansheng Xu, Fei Chu, Xingyu Huo, Yue Tang, Xiaogang Sun, Bi-Sen Ding, De-Pei Liu, Shengshou Hu, Miao Wang

Background

Genome-wide association studies identified the association of the CXCL12 genetic locus (which encodes the chemokine CXCL12, also known as stromal cell-derived factor 1) with coronary artery disease and myocardial infarction (MI). Unlike CXCR4, the classic receptor for CXCL12, the function of CXCR7 (the most recently identified receptor) in vascular responses to injury and in MI remains unclear.

Conclusions

CXCR7 represents a novel regulator of vascular homeostasis that functions in the endothelial compartment with sufficient capacity to affect cardiac function and remodeling after MI. Activation of CXCR7 may have therapeutic potential for clinical restenosis after percutaneous coronary intervention and for heart remodeling after MI.

Methods

Tissue expression of CXCR7 was examined in arteries from mice and humans. Mice that harbored floxed CXCR7 and Cdh5-promoter driven CreERT2 were treated with tamoxifen to induce endothelium-restricted deletion of CXCR7. The resulting conditional knockout mice and littermate controls were studied for arterial response to angioplasty wire injury and cardiac response to coronary artery ligation. The role of CXCR7 in endothelial cell proliferation and angiogenesis was determined in vitro with cells from mice and humans. The effects of adenoviral delivery of CXCR7 gene and pharmacological activation of CXCR7 were evaluated in mice subjected to MI.

Results

Injured arteries from both humans and mice exhibited endothelial CXCR7 expression. Conditional endothelial CXCR7 deletion promoted neointimal formation without altering plasma lipid levels after endothelial injury and exacerbated heart functional impairment after MI, with increased both mortality and infarct sizes. Mechanistically, the exacerbated responses in vascular and cardiac remodeling are attributable to the key role of CXCR7 in promoting endothelial proliferation and angiogenesis. Impressively, the impaired post-MI cardiac remodeling occurred with elevated levels of CXCL12, which was previously thought to mediate cardiac protection by exclusively engaging its cognate receptor, CXCR4. In addition, both CXCR7 gene delivery via left ventricular injection and treatment with a CXCR7 agonist offered cardiac protection after MI. Conclusions: CXCR7 represents a novel regulator of vascular homeostasis that functions in the endothelial compartment with sufficient capacity to affect cardiac function and remodeling after MI. Activation of CXCR7 may have therapeutic potential for clinical restenosis after percutaneous coronary intervention and for heart remodeling after MI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。