Conclusion
Eventually, the mucoadhesive study and DPH-loaded particles were investigated. Also, the MSN-SH exhibited a high mucoadhesive capacity for buccal mucosa compared with MSN-NH2 and MSN.
Methods
Therefore, it seems that the preparation of a carrier that has the characteristics of adhesive mucus can increase the duration of drug retention on the mucous surface. To solve this problem, mesoporous silica nanoparticles (MSNPs) were synthesized and functionalized with amino and thiol groups and suggested as a system of drug delivery. The properties and structure of MSNPs were investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption-desorption isotherms (BET).
Results
Our outcomes indicated that the average sizes of bare MSNPs (MSN), amino modified MSNPs (MSN-NH2), and thiol modified MSNPs (MSN-SH) were obtained to be 611, 655, and 655 nm respectively and the average pore size of MSN, MSN-NH2, and MSN-SH were about 2.42 nm, 2.42 nm, and 2.44 nm, respectively, according to the BJH (Barrett-Joyner-Halenda) pore size distribution. The release kinetics and release of DPH from mesoporous silica carriers were evaluated.
