Discussion
Targeting hypoxia and HIF have been proposed as an anti-tumor therapy but the clinical efficacy of such strategies are modest. We propose that targeting the pHi may be more effective at treating cancers within a hypoxic TME.
Methods
We used in vitro models of MM, in which the culturing medium was modified to specific pH and pO2 levels and then measured the effects on cell survival that was correlated with changes in intracellular (pHi) and extracellular pH (pHe). In a MM xenograft model, we used PET/CT to study hypoxia-mediated effects on tumor growth.
Results
Hypoxia-mediated apoptosis of MM cells is correlated with acidic intracellular pHi (less than < 6.6) that is dependent on HIF activity. Using a polyamide HIF responsive element binding compound, a carbonic anhydrase inhibitor (acetazolamide), and an NHE-1 inhibitor (amiloride) acidified the pHi and lead to cell death. In contrast, treatment of cells with an alkalization agent, Na-lactate, rescued these cells by increasing the pHi (pH > 6.6). Finally, treatment of mice with acetazolamide decreased cell growth in the tumor nodules.
