Citrus pectin modified by microfluidization and ultrasonication: Improved emulsifying and encapsulation properties

柑橘果胶经微流化和超声波改性:提高乳化和包封性能

阅读:6
作者:Wenjun Wang, Yiming Feng, Weijun Chen, Kyle Adie, Donghong Liu, Yun Yin

Abstract

In this study, modified citrus pectin treated with a combination of microfluidization and ultrasonication was compared to the original and ultrasonication treated pectin on hydrodynamic diameter, molecular weight, polydispersity, zeta potential, apparent viscosity, Fourier-transform infrared spectroscopy (FTIR), 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging capacity, scanning electron microscope (SEM), atomic force microscopy (AFM), their emulsifying properties and encapsulation properties. Modified pectin treated with a combination of microfluidization and moderate ultrasonication (MUB) was found to have lowest hydrodynamic diameter (418 nm), molecular weight (237.69 kDa) and polydispersity (0.12), and relatively low apparent viscosity among all pectin samples. Furthermore, it showed significantly higher DPPH radical scavenging capacity than the original pectin although only slightly higher than that of ultrasonication treated one (UB). MUB showed a thin fibrous morphology and decreased degree of branching from SEM and AFM. Emulsion stabilized by MUB had highest centrifugal and thermal stability compared to emulsions stabilized by UB and the original pectin. This could be attributed to higher interfacial loading of MUB (17.90 mg/m2) forming more compact interfacial layer observed by confocal laser scanning microscopy (CLSM). Moreover, both MUB and UB exhibited improved encapsulation functionality to protect cholecalciferol (vitamin D3) from UV degradation compared to the original pectin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。