A model for phospho-caveolin-1-driven turnover of focal adhesions

磷酸化 Caveolin-1 驱动的粘着斑转换模型

阅读:4
作者:Micha Nethe, Peter L Hordijk

Abstract

The regulation of Focal Adhesion (FA) dynamics is a key aspect of cellular motility. FAs concentrate integrins and associated cytoskeletal elements as well as a large number of regulatory proteins, including adapters, kinases and small GTPases of the Rho Family. We have recently shown that activated Rac1 can localize to FAs and can initiate the accumulation of the adapter protein Caveolin1 (Cav1) at FAs. As reported by several groups including ours, this translocation requires Cav1 phosphorylation at Tyr14, presumably by Src. Here we provide additional data regarding this process and briefly review recent literature. Finally, we incorporated the different pieces of available information into a mechanistic model. This model proposes that local Rac1 activation initiates a series of events that involve endosomal traffic of Cav1 and Src, targeting these proteins to or near FAs. Next, within specific membrane domains, Src can mediate the phosphorylation of Cav1 at Tyr 14, which is important for the stable FA localization of Cav1. Finally, dephosphorylation of Cav1 may represent a key step required for internalization, FA turnover and cell motility.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。