Effect of POSS-Modified Montmorillonite on Thermal, Mechanical, and Electrical Properties of Unsaturated Polyester Nanocomposites

POSS 改性蒙脱土对不饱和聚酯纳米复合材料热性能、机械性能和电性能的影响

阅读:6
作者:Nidhin Divakaran, Manoj B Kale, Duraisami Dhamodharan, Suhail Mubarak, Lixin Wu, Jianlei Wang

Abstract

Montmorillonite (MMT) displays excellent cohesion with an unsaturated polyester (UP) matrix to generate a material which exhibits an extensive range of commercial applications. The organic modification of MMT using polyhedral oligomeric silsesquioxanes (POSS) and the effect of POSS-MMT on the thermal, mechanical, and electrical properties of UP are reported here. Transmission electron microscopy (TEM) images were used to characterize the modification of MMT using POSS. Modified MMT (POSS-MMT) was incorporated, at different wt.% (0.5, 1, 3, 5), into UP via in-situ polymerization. The presence of POSS-MMT enhanced the characteristic properties of UP as a consequence of good dispersion in the polymer matrix. Scanning electron microscopy (SEM) images support effective POSS-MMT dispersion leading to tensile strength enhancement of a UP/POSS-MMT nanocomposite (3 wt.% POSS-MMT) by 54.7% as compared to that for unmodified UP. TGA displays a 35 °C improvement of thermal stability (10% mass loss) at 5% POSS-MMT incorporation, while the electrical conductivity is improved by 108 S/m (3 wt.% POSS-MMT) in comparison to that for unmodified UP. The conventional obstacle of UP associated with shrinkage weight loss during curing seems to be moderated with POSS-MMT incorporation (3%) resulting in a 27.8% reduction in shrinkage weight loss. These fabricated nanocomposites expand the versatility of UP as a high-performance material owing to enhancements of properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。