LMNA Mutations G232E and R482L Cause Dysregulation of Skeletal Muscle Differentiation, Bioenergetics, and Metabolic Gene Expression Profile

LMNA 突变 G232E 和 R482L 导致骨骼肌分化、生物能量学和代谢基因表达谱失调

阅读:8
作者:Elena V Ignatieva, Oksana A Ivanova, Margarita Y Komarova, Natalia V Khromova, Dmitrii E Polev, Anna A Kostareva, Alexey Sergushichev, Renata I Dmitrieva

Abstract

Laminopathies are a family of monogenic multi-system diseases resulting from mutations in the LMNA gene which include a wide range of neuromuscular disorders. Although lamins are expressed in most types of differentiated cells, LMNA mutations selectively affect only specific tissues by mechanisms that remain largely unknown. We have employed the combination of functional in vitro experiments and transcriptome analysis in order to determine how two LMNA mutations associated with different phenotypes affect skeletal muscle development and metabolism. We used a muscle differentiation model based on C2C12 mouse myoblasts genetically modified with lentivirus constructs bearing wild-type human LMNA (WT-LMNA) or R482L-LMNA/G232E-LMNA mutations, linked to familial partial lipodystrophy of the Dunnigan type and muscular dystrophy phenotype accordingly. We have shown that both G232E/R482L-LMNA mutations cause dysregulation in coordination of pathways that control cell cycle dynamics and muscle differentiation. We have also found that R482/G232E-LMNA mutations induce mitochondrial uncoupling and a decrease in glycolytic activity in differentiated myotubes. Both types of alterations may contribute to mutation-induced muscle tissue pathology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。