Transcriptomic insights into the molecular mechanism of wheat response to stripe rust fungus

转录组学洞察小麦对条锈病真菌反应的分子机制

阅读:6
作者:Rong Liu, Jing Lu, Lei Zhang, Yu Wu

Abstract

The wheat crop (Triticum aestivum L.) is the widely cultivated and most important staple foods of worlds. Stripe (yellow) rust is prompted by Puccinia striiformis f. sp. tritici (Pst) to reduces the yield and grain quality of the wheat significantly. Although many resistant cultivars have been successfully used in wheat breeding, the size of the regulating network and the underlying molecular mechanisms of wheat to response Pst still unknown. Therefore, in order to identify differentially expression genes (DEGs) and the regulate network related to Pst resistance, 15 cDNA libraries were constructed from wheat with CYR34 infection. In this study, a highly susceptible cv. Chuanyu12 (CY12) was used to study the transcriptome profiles after being inoculated with Pst physiological race CYR34. The DEGs were investigated at 24h, 48h, 72h, and 7 days post-inoculation. Certain key genes and pathways of response for Pst-CYR34 in CY12 were identified. The results revealed that Pst-CYR34 inhibited the DEGs related to energy metabolism, biosynthesis, carbon fixation, phenylalanine metabolism, and plant hormone signaling pathways after post-inoculation at 24h, 48h, 72h, and 7d. Light-harvesting chlorophyll protein complex in photosystem I and photosystem II; F-type ATPase, cytochrome b6/f/complex, and photosynthetic electron transport; ethylene, salicylic acid (SA), and jasmonic acid (JA); and lignin and flavonoids biosynthesis in CY12 are among the down-regulated DEGs. The expression patterns of these DEGs were verified via Quantitative Real-time PCR analysis. Our results give insights into the foundation for further exploring the molecular mechanisms regulating networks of Pst response and opens the door for bread wheat Pst resistance breeding.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。