The role of membrane excitability in pancreatic β-cell glucotoxicity

膜兴奋性在胰腺 β 细胞葡萄糖毒性中的作用

阅读:11
作者:Zeenat A Shyr, Zhiyu Wang, Nathaniel W York, Colin G Nichols, Maria S Remedi

Abstract

Persistent hyperglycemia is causally associated with pancreatic β-cell dysfunction and loss of pancreatic insulin. Glucose normally enhances β-cell excitability through inhibition of KATP channels, opening of voltage-dependent calcium channels, increased [Ca2+]i, which triggers insulin secretion. Glucose-dependent excitability is lost in islets from KATP-knockout (KATP-KO) mice, in which β-cells are permanently hyperexcited, [Ca2+]i, is chronically elevated and insulin is constantly secreted. Mouse models of human neonatal diabetes in which KATP gain-of-function mutations are expressed in β-cells (KATP-GOF) also lose the link between glucose metabolism and excitation-induced insulin secretion, but in this case KATP-GOF β-cells are chronically underexcited, with permanently low [Ca2+]i and lack of glucose-dependent insulin secretion. We used KATP-GOF and KATP-KO islets to examine the role of altered-excitability in glucotoxicity. Wild-type islets showed rapid loss of insulin content when chronically incubated in high-glucose, an effect that was reversed by subsequently switching to low glucose media. In contrast, hyperexcitable KATP-KO islets lost insulin content in both low- and high-glucose, while underexcitable KATP-GOF islets maintained insulin content in both conditions. Loss of insulin content in chronic excitability was replicated by pharmacological inhibition of KATP by glibenclamide, The effects of hyperexcitable and underexcitable islets on glucotoxicity observed in in vivo animal models are directly opposite to the effects observed in vitro: we clearly demonstrate here that in vitro, hyperexcitability is detrimental to islets whereas underexcitability is protective.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。