Structural basis of substrate recognition by a novel thermostable (S)-enantioselective ω-transaminase from Thermomicrobium roseum

粉红热微菌中新型耐热(S)-对映选择性ω-转氨酶的底物识别结构基础

阅读:6
作者:Sunghark Kwon, Jun Hyuck Lee, Chang Min Kim, Hyunseok Jang, Hyungdon Yun, Ju-Hong Jeon, Insuk So, Hyun Ho Park

Abstract

Transaminases catalyze the reversible transfer reaction of an amino group between a primary amine and an α-keto acid, utilizing pyridoxal 5'-phosphate as a cofactor. ω-transaminases (ωTAs) recognize an amino group linked to a non-α carbon of amine substrates. Recently, a novel (S)-enantioselective ωTA from Thermomicrobium roseum (Tr-ωTA) was identified and its enzymatic activity reported. However, the detailed mechanism of (S)-enantioselective substrate recognition remained unclear. In this study, we determined the crystal structure of Tr-ωTA at 1.8 Å resolution to elucidate the mechanism underlying Tr-ωTA substrate (S)-enantioselectivity. A structural analysis of Tr-ωTA along with molecular docking simulations revealed that two pockets at the active site tightly restrict the size and orientation of functional groups of substrate candidates. Based on the structural information and docking simulation results, we propose a comprehensive catalytic mechanism of Tr-ωTA. The present study thus provides structural and functional insights into the (S)-enantioselectivity of Tr-ωTA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。