The Tumor Suppressor NKX3.1 Is Targeted for Degradation by DYRK1B Kinase

肿瘤抑制因子 NKX3.1 被 DYRK1B 激酶降解

阅读:7
作者:Liang-Nian Song, Jose Silva, Antonius Koller, Andrew Rosenthal, Emily I Chen, Edward P Gelmann

Abstract

NKX3.1 is a prostate-specific homeodomain protein and tumor suppressor whose expression is reduced in the earliest phases of prostatic neoplasia. NKX3.1 expression is not only diminished by genetic loss and methylation, but the protein itself is a target for accelerated degradation caused by inflammation that is common in the aging prostate gland. NKX3.1 degradation is activated by phosphorylation at C-terminal serine residues that mediate ubiquitination and protein turnover. Because NKX3.1 is haploinsufficient, strategies to increase its protein stability could lead to new therapies. Here, a high-throughput screen was developed using an siRNA library for kinases that mediate NKX3.1 degradation. This approach identified several candidates, of which DYRK1B, a kinase that is subject to gene amplification and overexpression in other cancers, had the greatest impact on NKX3.1 half-life. Mechanistically, NKX3.1 and DYRK1B were shown to interact via the DYRK1B kinase domain. In addition, an in vitro kinase assay showed that DYRK1B phosphorylated NKX3.1 at serine 185, a residue critical for NKX3.1 steady-state turnover. Lastly, small-molecule inhibitors of DYRK1B prolonged NKX3.1 half-life. Thus, DYRK1B is a target for enzymatic inhibition in order to increase cellular NKX3.1. Implications: DYRK1B is a promising and novel kinase target for prostate cancer treatment mediated by enhancing NKX3.1 levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。