ROS-Mediated Enamel Formation Disturbance Characterized by Alternative Cervical Loop Cell Proliferation and Downregulation of RhoA/ROCK in Ameloblasts

ROS 介导的牙釉质形成障碍,以替代性颈环细胞增殖和成釉细胞中 RhoA/ROCK 的下调为特征

阅读:8
作者:Yuchan Xu, Yunyan Zhang, Jingwen Zheng, Mingxue Xu, Yuzhi Yang, Weihua Guo

Abstract

Reactive oxygen stress (ROS) is generally accepted as a signal transducer for coordinating the growth and differentiation of tissues and organs in the oral and maxillofacial region. Although ROS has been confirmed to affect the development of enamel, it is not yet known that the specific mechanism of ROS accumulation induced enamel defects. Given the lack of knowledge of the role of ROS in enamel, the aim of the study is to determine how oxidative stress affects cervical cells and ameloblast cells. Using SOD1 knockout mice, we identified a relationship between ROS fluctuations and abnormal enamel structure with HE staining, micro-CT, and scanning electron microscope. Increased ROS induced by H2O2, certified by the DCFH probe, has resulted in a dual effect on the proliferation and differentiation of cervical cells, indicating a higher tendency to proliferate at low ROS concentrations. Ameloblasts transfected with SOD1 siRNA showed a significant reduction of RhoA and ROCK. This study investigates for the first time that SOD1-mediated ROS accumulation disrupted normal enamel structure through alternative cervical loop cell proliferation and downregulation of RhoA and ROCK in ameloblasts, demonstrating the convoluted role of ROS in monitoring the progress of enamel defects.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。