Methionine is a metabolic dependency of tumor-initiating cells

蛋氨酸是肿瘤起始细胞的代谢依赖性

阅读:10
作者:Zhenxun Wang, Lian Yee Yip, Jia Hui Jane Lee, Zhengwei Wu, Hui Yi Chew, Pooi Kiat William Chong, Chin Chye Teo, Heather Yin-Kuan Ang, Kai Lay Esther Peh, Ju Yuan, Siming Ma, Li Shi Kimberly Choo, Nurhidayah Basri, Xia Jiang, Qiang Yu, Axel M Hillmer, Wan Teck Lim, Tony Kiat Hon Lim, Angela Takano, E

Abstract

Understanding cellular metabolism holds immense potential for developing new classes of therapeutics that target metabolic pathways in cancer. Metabolic pathways are altered in bulk neoplastic cells in comparison to normal tissues. However, carcinoma cells within tumors are heterogeneous, and tumor-initiating cells (TICs) are important therapeutic targets that have remained metabolically uncharacterized. To understand their metabolic alterations, we performed metabolomics and metabolite tracing analyses, which revealed that TICs have highly elevated methionine cycle activity and transmethylation rates that are driven by MAT2A. High methionine cycle activity causes methionine consumption to far outstrip its regeneration, leading to addiction to exogenous methionine. Pharmacological inhibition of the methionine cycle, even transiently, is sufficient to cripple the tumor-initiating capability of these cells. Methionine cycle flux specifically influences the epigenetic state of cancer cells and drives tumor initiation. Methionine cycle enzymes are also enriched in other tumor types, and MAT2A expression impinges upon the sensitivity of certain cancer cells to therapeutic inhibition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。