Covalent linkage of bacterial voltage-gated sodium channels

细菌电压门控钠通道的共价连接

阅读:10
作者:Huaping Sun #, Zeyu Zheng #, Olena A Fedorenko, Stephen K Roberts

Background

Bacterial sodium channels are important models for understanding ion permeation and selectivity. However, their homotetrameric structure limits their use as models for understanding the more complex eukaryotic voltage-gated sodium channels (which have a pseudo-heterotetrameric structure formed from an oligomer composed of four domains). To bridge this gap we attempted to synthesise oligomers made from four covalently linked bacterial sodium channel monomers and thus resembling their eukaryotic counterparts.

Conclusion

This study has generated new tools for the investigation of eukaryotic channels. The successful covalent linkage of four bacterial Nav channel monomers should permit the introduction of radial asymmetry into the structure of bacterial Nav channels and enable the known structures of these channels to be used to gain unique insights into structure-function relationships of their eukaryotic counterparts.

Results

Western blot analyses revealed NaChBac oligomers to be inherently unstable whereas intact expression of NavMs oligomers was possible. Immunodectection using confocal microscopy and electrophysiological characterisation of NavMs tetramers confirmed plasma membrane localisation and equivalent functionality with wild type NavMs channels when expressed in human embryonic kidney cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。