Protective effects and potential mechanisms of Pien Tze Huang on cerebral chronic ischemia and hypertensive stroke

片仔癀对慢性脑缺血及高血压性中风的保护作用及潜在机制

阅读:5
作者:Lihong Zhang, Wai Ping Lam, Lanhai Lü, Chunmei Wang, Yeuk Wa Wong, Lok Hang Lam, Hong Chai Tang, Maria Sen Mun Wai, Mingwei Wang, Wing Hang Kwong, Sai Ming Ngai, Ying Tat Mak, David Tai Wai Yew

Background

Stroke caused by brain ischemia is the third leading cause of adult disability. Active prevention and early treatment of stroke targeting the causes and risk factors may decrease its incidence, mortality and subsequent disability. Pien Tze Huang (PZH), a Chinese medicine formula, was found to have anti-edema, anti-inflammatory and anti-thrombotic effects that can prevent brain damage. This study aims to investigate the potential mechanisms of the preventive effects of Pien Tze Huang on brain damage caused by chronic ischemia and hypertensive stroke in rats.

Conclusion

Pien Tze Huang showed preventive effects on limiting the damage or injury caused by chronic ischemia and hypertensive stroke in rats. The effect of Pien Tze Huang was possibly related to prevention of cell death from apoptosis or ROS/oxidative damage in mitochondria.

Methods

The effects of Pien Tze Huang on brain protein expression in spontaneously hypertensive rat (SHR) and stroke prone SHR (SHRsp) were studied with 2-D gel electrophoresis and mass spectrometric analysis with a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)/TOF tandem mass spectrometer and on brain cell death with enzyme link immunosorbent assay (ELISA) and immunostaining.

Results

Pien Tze Huang decreased cell death in hippocampus and cerebellum caused by chronic ischemia and hypertensive stroke. Immunostaining of caspase-3 results indicated that Pien Tze Huang prevents brain cells from apoptosis caused by ischemia. Brain protein expression results suggested that Pien Tze Huang downregulated QCR2 in the electron transfer chain of mitochondria preventing reactive oxygen species (ROS) damage and possibly subsequent cell death (caspase 3 assay) as caused by chronic ischemia or hypertensive stroke to hippocampus and cerebellum.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。