Eliciting α7-nAChR exerts cardioprotective effects on ischemic cardiomyopathy via activation of AMPK signalling

诱导 α7-nAChR 通过激活 AMPK 信号对缺血性心肌病发挥心脏保护作用

阅读:4
作者:Zhong-Hao Lin, Yue-Chun Li, Shu-Jie Wu, Cheng Zheng, Yuan-Zheng Lin, Hao Lian, Wei-Qian Lin, Jia-Feng Lin

Abstract

Our previous studies have reported that agonist of α7 nicotinic acetylcholine receptors prevented electrophysiological dysfunction of rats with ischaemic cardiomyopathy (ICM) by eliciting the cholinergic anti-inflammatory pathway (CAP). Adenosine monophosphate-activated protein kinase (AMPK) signalling is widely recognized exerting cardioprotective effect in various cardiomyopathy. Here, we aimed to investigate whether the protective effects of the CAP are associated with AMPK signalling in ICM. In vivo, coronary artery of rats was ligated for 4 weeks to induce the ICM and then treated with PNU-282987 (CAP agonist) and BML-275 dihydrochloride (AMPK antagonist) for 4 weeks. In vitro, primary macrophages harvested from rats were induced inflammation by Lipopolysaccharide (LPS) treatment and then treated with PNU-282987 and BML-275 dihydrochloride. In vivo, exciting CAP by PUN-282987 elicited an activation of AMPK signalling, alleviated ventricular remodeling, modified the cardiac electrophysiological function, reduced the cardiac expression of collagens and inflammatory cytokines and maintained the integrity of ultrastructure in the ischemic heart. However, the benefits of CAP excitation were blunted by AMPK signaling antagonization. In vitro, excitation of the CAP was observed inhibiting the nuclear transfer of NF-κB p65 of macrophages and promoting the transformation of Ly-6Chigh macrophages into Ly-6Clow macrophages. However, inhibiting AMPK signalling by BML-275 dihydrochloride reversed the CAP effect on LPS-treated macrophages. Finally, our findings suggest that eliciting the CAP modulates the inflammatory response in ICM through regulating AMPK signalling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。