Tail vein injection of mmLDL upregulates mouse mesenteric artery ETB receptors via activation of the ERK1/2 pathway

尾静脉注射 mmLDL 通过激活 ERK1/2 通路上调小鼠肠系膜动脉 ETB 受体

阅读:4
作者:Yang Liu, Xiao-Lan Chen, Cang-Bao Xu, Lei Cao, Jie Lin, Gen Chen, Jie Li

Abstract

Minimally modified low density lipoprotein (mmLDL) is a risk factor for cardiovascular disease. This study investigated the effect of mmLDL on mouse mesenteric artery endothelin type B (ETB) receptors and its molecular mechanism. Mice were injected with normal saline (NS group), mmLDL in the tail vein (mmLDL group), or with both mmLDL and an intraperitoneal injection of the ERK1/2 pathway-specific inhibitor U0126 (mmLDL+U0126 group). The dose-response curve of mesenteric artery contraction induced by sarafotoxin 6c (S6c), the ETB receptor agonist, was measured using a sensitive myograph system. ELISAs, RT-PCR and Western blot were used to determine the serum concentrations of mouse oxidized low density lipoprotein (oxLDL), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) as well as the expression of ETB receptors, ICAM-1, VCAM-1 and phosphorylated-extracellular signal-regulated kinase 1/2 (p-ERK1/2). The S6c-induced contraction dose-response curve was significantly enhanced by mmLDL treatment and showed a significantly higher Emax value than in the NS group (P<0.001), and the ETB receptor mRNA and protein expression in the vascular wall was significantly higher than in the NS group. The serum concentration and expression of ICAM-1 and VCAM-1 were also increased by mmLDL treatment, but intraperitoneal injection of U0126 inhibited these changes as well as the increase in p-ERK1/2 protein in the vessel wall caused by mmLDL. ICAM-1 and VCAM-1 serum concentrations were positively correlated with the S6c-induced maximum contraction of blood vessels. Increased in vivo levels of mmLDL increased the serum concentrations and expression of ICAM-1 and VCAM-1 by activating the ERK1/2 pathway, resulting in the expression of ETB receptors and the enhancement of contractile function in vascular smooth muscle. Understanding the effect of mmLDL on ETB receptors and its mechanism can provide ideas for cardiovascular disease prevention and treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。