Inhibition of presynaptic calcium transients in cortical inputs to the dorsolateral striatum by metabotropic GABA(B) and mGlu2/3 receptors

代谢型 GABA(B) 和 mGlu2/3 受体抑制背外侧纹状体皮质输入中的突触前钙瞬变

阅读:5
作者:David A Kupferschmidt, David M Lovinger

Abstract

Cortical inputs to the dorsolateral striatum (DLS) are dynamically regulated during skill learning and habit formation, and are dysregulated in disorders characterized by impaired action control. Therefore, a mechanistic investigation of the processes regulating corticostriatal transmission is key to understanding DLS-associated circuit function, behaviour and pathology. Presynaptic GABA(B) and group II metabotropic glutamate (mGlu2/3) receptors exert marked inhibitory control over corticostriatal glutamate release in the DLS, yet the signalling pathways through which they do so are unclear. We developed a novel approach using the genetically encoded calcium (Ca(2+) ) indicator GCaMP6 to assess presynaptic Ca(2+) in corticostriatal projections to the DLS. Using simultaneous photometric presynaptic Ca(2+) and striatal field potential recordings, we report that relative to P/Q-type Ca(2+) channels, N-type channels preferentially contributed to evoked presynaptic Ca(2+) influx in motor cortex projections to, and excitatory transmission in, the DLS. Activation of GABA(B) or mGlu2/3 receptors inhibited both evoked presynaptic Ca(2+) transients and striatal field potentials. mGlu2/3 receptor-mediated depression did not require functional N-type Ca(2+) channels, but was attenuated by blockade of P/Q-type channels. These findings reveal presynaptic mechanisms of inhibitory modulation of corticostriatal function that probably contribute to the selection and shaping of behavioural repertoires.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。