Lin28-mediated temporal promotion of protein synthesis is crucial for neural progenitor cell maintenance and brain development in mice

Lin28 介导的蛋白质合成时间促进对于小鼠神经祖细胞的维持和大脑发育至关重要

阅读:4
作者:Stephanie Herrlinger, Qiang Shao, Mei Yang, Qing Chang, Yang Liu, Xiaohan Pan, Hang Yin, Li-Wei Xie, Jian-Fu Chen

Abstract

Neural progenitor cells (NPCs) undergo rapid proliferation during neurulation. This rapid growth generates a high demand for mRNA translation in a timing-dependent manner, but its underlying mechanism remains poorly understood. Lin28 is an RNA-binding protein with two paralogs, Lin28a and Lin28b, in mammals. Mice with Lin28b deletion exhibit no developmental defects, whereas we have previously reported that Lin28a deletion leads to microcephaly. Here, we find that Lin28a/b double knockout (dKO) mice display neural tube defects (NTDs) coupled with reduced proliferation and precocious differentiation of NPCs. Using ribosomal protein 24 hypomorphic mice (Rpl24Bst/+ ) as a genetic tool to dampen global protein synthesis, we found that Lin28a-/-;Rpl24Bst/+ compound mutants exhibited NTDs resembling those seen in Lin28a/b dKO mice. Increased NPC numbers and brain sizes in Lin28a-overexpressing mice were rescued by Rpl24Bst/+ heterozygosity. Mechanistically, polysome profiling revealed reduced translation of genes involved in the regulation of cell cycle, ribosome biogenesis and translation in dKO mutants. Ribosome biogenesis was reduced in dKO and increased in Lin28a-overexpressing NPCs. Therefore, Lin28-mediated promotion of protein synthesis is essential for NPC maintenance and early brain development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。