Efficient Magneto-Luminescent Nanosystems based on Rhodamine-Loaded Magnetite Nanoparticles with Optimized Heating Power and Ideal Thermosensitive Fluorescence

基于载罗丹明磁铁矿纳米粒子的高效磁致发光纳米系统,具有优化的加热功率和理想的热敏荧光

阅读:5
作者:Idoia Castellanos-Rubio, Ander Barón, Oier Luis-Lizarraga, Irati Rodrigo, Izaskun Gil de Muro, Iñaki Orue, Virginia Martínez-Martínez, Ainara Castellanos-Rubio, Fernando López-Arbeloa, Maite Insausti

Abstract

Nanosystems that simultaneously contain fluorescent and magnetic modules can offer decisive advantages in the development of new biomedical approaches. A biomaterial that enables multimodal imaging and contains highly efficient nanoheaters together with an intrinsic temperature sensor would become an archetypical theranostic agent. In this work, we have designed a magneto-luminescent system based on Fe3O4 NPs with large heating power and thermosensitive rhodamine (Rh) fluorophores that exhibits the ability to self-monitor the hyperthermia degree. Three samples composed of highly homogeneous Fe3O4 NPs of ∼25 nm and different morphologies (cuboctahedrons, octahedrons, and irregular truncated-octahedrons) have been finely synthesized. These NPs have been thoroughly studied in order to choose the most efficient inorganic core for magnetic hyperthermia under clinically safe radiofrequency. Surface functionalization of selected Fe3O4 NPs has been carried out using fluorescent copolymers composed of PMAO, PEG and Rh. Copolymers with distinct PEG tail lengths (5-20 kDa) and different Rh percentages (5, 10, and 25%) have been synthesized, finding out that the copolymer with 20 kDa PEG and 10% Rh provides the best coating for an efficient fluorescence with minimal aggregation effects. The optimized Fe3O4@Rh system offers very suitable fluorescence thermosensitivity in the therapeutic hyperthermia range. Additionally, this sample presents good biocompatibility and displays an excellent heating capacity within the clinical safety limits of the AC field (≈ 1000 W/g at 142 kHz and 44 mT), which has been confirmed by both calorimetry and AC magnetometry. Thus, the current work opens up promising avenues toward next-generation medical technologies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。