TLR4 counteracts BVRA signaling in human leukocytes via differential regulation of AMPK, mTORC1 and mTORC2

TLR4 通过对 AMPK、mTORC1 和 mTORC2 的差异调节来抵消人类白细胞中的 BVRA 信号传导

阅读:12
作者:Zhiyong Zhang, Louis F Amorosa, Anna Petrova, Susette Coyle, Marie Macor, Mohan Nair, Leonard Y Lee, Beatrice Haimovich

Abstract

TLR4 is implicated in diseases associated with chronic low-grade inflammation, yet homeostatic signaling mechanisms that prevent and/or are affected by chronic TLR4 activation are largely uncharacterized. We recently reported that LPS/TLR4 activates in human leukocytes signaling intermediates (SI), abbreviated TLR4-SI, which include mTORC1-specific effectors and targets, and that leukocytes of patients with T2D or after cardiopulmonary bypass (CPB) expressed similar SI. Extending these previous findings, here we show that TLR4-SI expression post-CPB was associated with low serum bilirubin and reduced preoperative expression of biliverdin reductase A (BVRA), the enzyme that converts biliverdin to bilirubin, in patient's leukocytes. Biliverdin inhibited TLR4 signaling in leukocytes and triggered phosphorylation of mTORC2-specific targets, including Akt, PKCζ, AMPKα-LKB1-TSC1/2, and their association with BVRA. Torin, PP242, and a PKCζ inhibitory peptide, but not rapamycin, prevented these biliverdin-induced responses and TLR4 inhibition. In contrast, LPS/TLR4 triggered decreases in BVRA, AMPKα and PKCζ expression, and an increase in haptoglobin, a heme binding protein, in leukocytes in vivo and in vitro, indicating that activated TLR4 may suppress biliverdin/BVRA signaling. Significantly, compared to non-diabetics, BVRA and PKCζ expression was low and haptoglobin was high in T2D patients leukocytes. Sustained TLR4 activation may deregulate homeostatic anti-inflammatory BVRA/mTORC2 signaling and thereby contribute to chronic inflammatory diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。