VEGF Receptor 1-Expressing Macrophages Recruited from Bone Marrow Enhances Angiogenesis in Endometrial Tissues

从骨髓中募集的 VEGF 受体 1 表达巨噬细胞可增强子宫内膜组织的血管生成

阅读:10
作者:Kazuki Sekiguchi, Yoshiya Ito, Kyoko Hattori, Tomoyoshi Inoue, Kanako Hosono, Masako Honda, Akiko Numao, Hideki Amano, Masabumi Shibuya, Nobuya Unno, Masataka Majima

Abstract

Angiogenesis is critical in maintenance of endometrial tissues. Here, we examined the role of VEGF receptor 1 (VEGFR1) signaling in angiogenesis and tissue growth in an endometriosis model. Endometrial fragments were implanted into the peritoneal wall of mice, and endometrial tissue growth and microvessel density (MVD) were determined. Endometrial fragments from wild-type (WT) mice grew slowly with increased angiogenesis determined by CD31+ MVD, peaking on Day 14. When tissues from WT mice were transplanted into VEGFR1 tyrosine kinase-knockout mice, implant growth and angiogenesis were suppressed on Day 14 compared with growth of WT implants in a WT host. The blood vessels in the implants were not derived from the host peritoneum. Immunostaining for VEGFR1 suggested that high numbers of VEGFR1+ cells such as macrophages were infiltrated into the endometrial tissues. When macrophages were deleted with Clophosome N, both endometrial tissue growth and angiogenesis were significantly suppressed. Bone marrow chimera experiments revealed that growth and angiogenesis in endometrial implants were promoted by host bone marrow-derived VEGFR1+/CD11b+ macrophages that accumulated in the implants, and secreted basic fibroblast growth factor (bFGF). A FGF receptor kinase inhibitor, PD173047 significantly reduced size of endometrial tissues and angiogenesis. VEGFR1 signaling in host-derived cells is crucial for growth and angiogenesis in endometrial tissue. Thus, VEGFR1 blockade is a potential treatment for endometriosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。